
Stephen Hopkins and Guanghui Chen
Computer Science

Ambient Occlusion Ray Tracing on the GPU

Abstract: Our project implements a parallel ray tracer featuring ambient occlusion on the
GPU. Taking advantage of the GPU’s massively parallel processing structure, we can quickly
render an otherwise slow CPU ambient occlusion render pass. In our results, we compare the
performance of constant memory versus global memory for storing the scene.

Method

Results

Parallel Algorithm for CUDA
width - the width of the output image
height - the height of the output image
maxDistance - the maximum distance for a ray that counts as an intersection
numSamples - the number of secondary rays to send out for calculating AO

pixelX = blockIdx.x * blockDim.x + threadIdx.x
pixelY = blockIdx.y * blockDim.y + threadIdx.y
for(i = pixelX; i < width; i += gridDim.x * blockDim.x)
 for(j = pixelY; j < height; j += gridDim.y * blockDim.y)
 calculate ray from (pixelX, pixelY) and cameraPos
 intersect ray with scene to obtain intersection point, p, and normal, n
 numHits = 0
 for k = 0 to numSamples
 send ray in random direction within the hemisphere defined by p and n
 if(ray intersects with scene within maxDistance)
 ++numHits
 output[pixeY * width + pixelX] = numHits / numSamples

General Ray Tracing

Ambient Occlusion
Ambient occlusion (AO) is a method in computer
graphics to approximate the way light radiates in
real life. It can determine a surface bright or dark
based on how easy it is for the surface to ‘view’ the
outside world and does not need any lighting
information.

In our implementation, we calculate ambient
occlusion by sampling random rays from the hit
point and counting how many rays are blocked.
The ray direction for each sample is within the
halfspace defined by the surface normal, n in Fig.
2.

This is an expensive secondary ray tracing
operation, depending on how many ray samples
are used, so we accelerate it by doing it on the
GPU with CUDA.

Fig. 3 - Pixels calculated by single thread on GPU

By simulating the propagation of light rays, ray tracing
generates virtual rays and uses them to intersect with
geometries within the scene.

For each pixel on the screen, or “Image” in Fig. 1, the ray
tracing engine generates single or multiple rays. When a
ray hits geometry in the scene, the color calculated at
that hit point will be printed in the “Image”.

Additionally, with ray hitpoints and surface normals,
secondary computations can be done such as shadows,
reflections, and ambient occlusion. These secondary
calculated colors are then composited together with the
initial diffuse model into a final color value. Our project
focuses on ambient occlusion which is described below.Fig. 1 - The rays start from the camera and pass

through the “Image” to hit the scene objects and
determine the appearance of pixels on the screen.

On the left is the pseudo code for
the kernel function on the GPU.
The idea is to distribute ray tracing
to each thread available to the
GPU and cover every pixel on the
image. See Fig. 3.

The distribution takes into account
both x and y positions on the
screen and it can aggregate the
pixels with similar geometry hits to
the same block on GPU, and thus
achieves better locality in memory
access.

GPU Memory Performance Test
The threads on the GPU are arranged in blocks and the
blocks are arranged in a grid. These different layers of
organization lead to a hierarchical memory structure.
Global memory and constant memory can be accessed by
any thread on the GPU. On the other hand, local memory
is accessible block wide, or per thread.

We try two types of memory usage strategies. One is to
put as much data in constant memory as possible. The
other way, we only utilize the global memory. With these
two implementations, we are able to compare the
performance of each type of memory on the GPU through
the performance of the ray tracer.

References
Real-time ray tracing with CUDA, M. Shih, et al., in Proc. of Int'l Conf. on Algorithms and Architectures for Parallel Processing (ICA3PP '09) (2009)
Raytracing diagram in Fig1. from http://www.codinghorror.com/blog/2008/03/real-time-raytracing.html

Fig. 2 - Image ray r intersects at point p on surface with
normal n. The red vectors are the random sample rays
generated by the AO algorithm

